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We study the distribution P��� of the equivalent conductance � for Erdös-Rényi �ER� and scale-free �SF�
weighted resistor networks with N nodes. Each link has conductance g�e−ax, where x is a random number
taken from a uniform distribution between 0 and 1 and the parameter a represents the strength of the disorder.
We provide an iterative fast algorithm to obtain P��� and compare it with the traditional algorithm of solving
Kirchhoff equations. We find, both analytically and numerically, that P��� for ER networks exhibits two
regimes: �i� A low conductance regime for ��e−apc, where pc=1/ �k� is the critical percolation threshold of the
network and �k� is the average degree of the network. In this regime P��� is independent of N and follows the
power law P�����−�, where �=1− �k� /a. �ii� A high conductance regime for ��e−apc in which we find that
P��� has strong N dependence and scales as P���� f�� ,apc /N1/3�. For SF networks with degree distribution
P�k��k−�, kmin�k�kmax, we find numerically also two regimes, similar to those found for ER networks.
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Recently much attention has been focused on complex
networks which characterize many biological, social, and
communication systems �1–4�. The networks are represented
by nodes associated with individuals, organizations, or com-
puters and by links representing their interactions. In many
real networks, each link has an associated weight; the larger
the weight, the harder it is to transverse the link. These net-
works are called “weighted” networks �5,6�.

Transport is one of the main functions of networks. While
the transport on unweighted networks has been studied �7�,
the effect of disorder on transport in networks is still an open
question. Here we study the distribution P��� of the equiva-
lent electrical conductance � between two randomly selected
nodes A and B on Erdös-Rényi �ER� �8,9� and scale-free �SF�
�1� weighted networks. We first provide an iterative fast al-
gorithm to obtain P��� for disordered resistor networks, and
then we develop a theory to explain the behavior of P���.
The theory is based on the percolation theory �10� for a
weighted random network. We model a weighted network by
assigning the conductance of a link connecting node i and
node j as in Ref. �11�,

gij � exp�− axij� , �1�

where the parameter a controls the broadness �“strength”� of
the disorder, and xij is a random number taken from a uni-
form distribution in the range �0,1�. We use this kind of
disorder since a recent study of magnetoresistance in real
granular materials systems �11� shows that the conductance
is given by Eq. �1�. Moreover, a recent study �12� shows that
many types of disorder distributions lead to the same univer-
sal behavior. The range of a�1 is called the strong disorder
�SD� limit �13,14�. The special case of unweighted networks,
i.e., a=0 or gij =1 for all links have been studied earlier �7�.

To construct ER networks of size N, we randomly connect
nodes with �k�N /2 links, where �k� is the average degree of

the network. To construct SF networks, in which the degree
distribution follows a power law, we employ the Molloy-
Reed algorithm �15�. The traditional algorithm to calculate
the probability density function �pdf� P��� is to compute �
between two nodes A and B by solving the Kirchhoff equa-
tions with fixed potential VA=1 and VB=0 and compute
P���d�, which gives the probability that two nodes in the
network have conductance between � and �+d�. However,
this method is time consuming and limited to relatively small
networks. Here we also use an iteration algorithm proposed
by Grimmett and Kesten �16� to calculate P��� and show
that it gives the same results as the traditional Kirchhoff
method.

In the limit N→� we ignore the loops between 2 ran-
domly chosen nodes because the probability to have loops is
very small. Hence the resistivity Ri of a randomly selected
branch i connecting a node with infinitely distant nodes sat-
isfies Ri=ri+1/ �	 j=1

k−1Rj
−1�, where ri=eaxi is the random resis-

tance of the link outgoing from this node and k is a random
number taken from the distribution p̃k= pkk / �k�, which is the
probability that a randomly selected link ends in a node of
degree k, where pk is the original degree distribution. In Fig.
1, we show the schematic iteration method. The randomly
selected nodes A and B are connected to the infinitely distant
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FIG. 1. Schematic iteration model. In this example R1 is infinite,
so it is not taken into account in the sum in Ri of Eq. �2�.
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nodes C. When we calculate RAC, the resistance between A
and C, we perform the iterative steps as follows.

First we calculate the distribution of resistivities of the
branches connecting node A with C. We start with N
branches having resistivities Ri

�0�=0 �i=1,2 , . . . ,N�, where
N is an arbitrary large number. Thus, initially the histogram
of these resistivities P0�R�=	�R�. At the iterative step n+1,
we compute a new histogram Pn+1�R� knowing the histogram
Pn�R�. In order to do this we generate a new set of resistiv-
ities Ri

�n+1� by connecting in parallel k−1 outgoing branches
coming from a randomly selected node of degree k obtained
from the distribution p̃k= pkk / �k�. Then we compute the re-
sistivity of a branch going through this node via an incoming
link with a random resistivity ri

�n� taken from the link resis-
tivity distribution,

Ri
�n+1� = ri

�n� +
1

	
j=1

k−1

1/Rj
�n�

. �2�

In Eq. �2�, if at least one of the terms Ri
�n�=0, we take

Ri
�n+1�=ri

�n�. Thus after the first iterative step P1�R� coincides
with the distribution of link resistivities.

According to the theorem proved in �16�, as n→�, Pn�R�
converges to a distribution of the resistivities of a branch
connecting a node to the infinitely distant nodes. The resis-
tivity between a randomly selected node of degree k and the
infinitely distant nodes is defined by

R̃�i� =
1

	
j=1

k

1/Rj

, �3�

where k is selected from the original degree distribution pk
and Rj is selected from Pn→��R�.

Finally, to compute the resistivity Rij between two ran-
domly selected nodes i and j �for example A and B in Fig. 1�,
we compute Rij = R̃�i�+ R̃�j�, where R̃�i� and R̃�j� are randomly
selected resistivities between a node and the infinitely distant
nodes. If N is a sufficiently large number, we find the con-
ductance distribution P��� between any two randomly se-
lected nodes.

In Figs. 2�a� and 2�b� we show the results of P��� using
the traditional method of solving Kirchhoff’s equations for
different values of N and the iterative method with N→� for
both ER and SF networks. We see that the main part of the
distribution �low conductances� does not depend on N, and
only the high conductance tail depends on N.

The behavior of the two regimes, low conductance and
high conductance, can be understood qualitatively as fol-
lows: For strong disorder a�1 all the current between two
nodes follows the optimal path between them. The problem
of the optimal path in a random graph in the strong disorder
limit can be mapped onto a percolation problem on a Cayley
tree with a degree distribution identical to the random graph
and with a fraction p of its edges conducting �17�. However,
the conductance on this path is determined by the bond with
the lowest conductance e−axmax, where xmax is the maximum

random number along the path. In the majority of cases
xmax� pc, where pc is the critical percolation threshold of the
network, and only when the two nodes both belong to the
incipient infinite percolation cluster �IIPC� �10�, xmax� pc.
Since the size of the IIPC scales as N2/3, the probability of
randomly selecting a node inside the IIPC is proportional to
N2/3 /N=N−1/3 �8–10�. Then the probability of randomly se-
lecting a pair inside the IIPC is proportional to �N−1/3�2

=N−2/3. These nodes contribute to the high conductance
range ��e−apc of P���. The low conductance regime is de-
termined by the distribution of xmax, which follows the be-
havior of the order parameter P��p� �for p� pc� in the per-
colation problem which is independent of N �17�. �This will
be explained later in the theoretical approach for the low
conductance regime.�

We call the low conductance regime a nonpercolation re-
gime and the high conductance regime a percolation regime.
In contrast, the property of the existing two regimes does not
show up in the optimal path length �18,19� and only the
scaling regime with N appears. This is since the path length
for almost all pairs is dominated by the IIPC �19�.

In Figs. 3�a� and 3�b� we plot for a given N only the
nonpercolation part of P��� as a function of � for fixed
values of �k� /a and different �k� and a values for ER net-
works. We see that it obeys a power law with the slope
�k� /a−1 for ��e−apc. Note that for ER networks pc=1/ �k�
�8,9�. In Fig. 3�c�, we plot the conductance distribution for
SF networks for fixed values of �k� /a. We can see the non-
percolation part seems to obey the same power law as ER
networks.

Next we present an analytical approach for the form of
P��� for low conductance regime. The distribution of the
maximal random number xmax along the optimal path can be
expressed in terms of the order parameter P��p� in the per-
colation problem on the Cayley tree, where P��p� is the
probability that a randomly chosen node on the Cayley tree
belongs to the IIPC �17�. For a random graph with degree
distribution pk, the probability to arrive at a node with k
outgoing branches by following a randomly chosen link is
�k+1�pk / �k� �20�. The probability that starting at a randomly
chosen link on a Cayley tree one can reach the �th generation
is
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FIG. 2. Plots of P��� for several values of N. The symbols are
for the Kirchhoff method and the solid line is for the iterative
method with N→�. �a� ER networks with fixed �k�=3 and a=15.
�b� SF networks with fixed �=3.5, kmin=2, �k�
3.33, and a=20.
The dashed line slopes are from the prediction of Eq. �11� or Eq.
�13�.
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f��p� � f� = 1 − 	
k=1

�
pkk�1 − pf�−1�k−1

�k�
, �4�

where f0=1. Slightly different from f� is the probability that
starting at a randomly chosen node one can reach the nth
generation,

f̃ n = 1 − 	
k=0

�

pk�1 − pfn−1�k. �5�

In the asymptotic limit f� converges to P� for a given value
of p,

f� → P��p� = 1 − 	
k=1

�
pkk�1 − pP��k−1

�k�
. �6�

In this limit we have a pair of nodes on a random graph
separated by a very long path of length n. The probability
that two nodes will be connected �conducting� at given p,
can be approximated by the probability that both of them
belong to the IIPC �16�,


�p� = � P̃��p�

P̃��1�
�2

, �7�

where P̃��p�� limn→� f̃ n=1−	k=0
� pk�1− pP��k. Note that the

negative derivative of 
�p� with respect to p is the distribu-
tion of xmax and thus gives P��� in the SD limit. In our case
�=e−ap, so replacing p by p=−ln � /a in Eq. �7� and differ-
entiating with respect to �, we obtain the distribution of con-
ductance in the SD limit when the source and sink are far
apart �n→ � �,

P��� = −
d

d�

��� = 
 2P̃��p�

�a�P̃��1��2

� P̃��p�
�p



p=−ln �/a

. �8�

For ER networks the degree distribution is a Poisson dis-
tribution with pk= �k�ke−�k� /k! �8,9� and thus P��p� satisfies

P��p� = 1 − e−�k�pP��p�, �9�

which has a positive root P� for p� pc=1/ �k�, and P̃��p�
= P��p�, thus

P��� = 
 2P��p�
�a�P��1��2

�P��p�
�p



p=−ln �/a

, �10�

where P��p� and P��1� are the solutions of Eq. �9�.
We test the analytical result of Eq. �10� by comparing the

numerical solution of Eqs. �9� and �10� with the simulations
on actual random graphs by solving Kirchhoff equations
�Figs. 2 and 3�. The agreement between the simulations and
the theoretical prediction is perfect in the SD limit, i.e., when
�k� /a is small.

Next we simplify P��� from Eq. �10�. Assuming that
P��1�
1, which is true for large �k�, and approximating a
slow varying function P��p� by P��1�, we obtain

P��� 
 2
�k�
a

��k�/a−1, �11�

for the range e−a���e−apc with pc=1/ �k�. In Figs. 2 and 3
we also show the results predicted by Eq. �11�. For an infinite
network, for p� pc=1/ �k�, P��p�=0, and hence, the distri-
bution of conductances must have a cutoff at �=e−apc. In-
deed, in Fig. 2�a� and Figs. 3�a� and 3�b� we see that the
upper cutoff of the iterative curves is close to e−apc.

As discussed above, the range of high conductivities cor-
responds to the case where both the source and the sink are
on the IIPC. Previously we found this percolation part to
scale as N−2/3. Using Fig. 2�a�, we compute the integral for
each P��� from e−apc to �, and find that indeed
�e−apc

� P���d��N−2/3, in good agreement with the theoretical
approach. To show how the percolation part of P��� is re-
lated to the parameters N, a, and pc, we analyze the conduc-
tance between pairs on the IIPC, i.e., each link on the opti-
mal path from source to sink has x less than pc. We compute
Pp��� of these pairs on the IIPC. When we simulate this
process, we have only N−2/3 probability to find this part from
the original normalized distribution P���. Thus, we normal-
ize Pp��� by dividing by N−2/3. Figures 4�a� and 4�b� show
the normalized Pp��� of pairs on the IIPC. In this range, we
see that Pp��� is dominated by high conductivities and we
find ���
e−apc and

���Pp��� = f� �

���
,

apc

N1/3� , �12�

that is, for fixed apc /N1/3, ���Pp��� scales with � / ��� as
seen in Fig. 4�b�. The scaled distributions have the same
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FIG. 3. Plots of P��� for fixed �k� /a. The symbols are for the Kirchhoff method and the solid line is for the iterative method. For the
same �k� /a, the iterative method for different a shows the same P��� except that the lower cutoff is different. �a� ER network with �k� /a
=0.2. �b� ER network with �k� /a=1.5. �c� SF network with �k� /a
0.35, �=2.5. The dashed line slopes are from the prediction of Eq. �11�
or Eq. �13�.
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shape for the same apc /N1/3 which specifies the strength of
disorder similarly to the behavior of the optimal path lengths
�12,18,19,21�. The explanation of this fact for the distribu-
tion of conductances is analogous to the arguments presented
in Refs. �17,18� for the distribution of the optimal path. Thus
the position of the maximum of the scaled curves in Fig.
4�b�, and the whole shape of the distributions, depend on
apc /N1/3.

We also find that the extreme high conductivities corre-
spond to the case where source and sinks are separated by

only one link. In this case, P���=
�k�

aN� ��−1 ���1�.
In summary, we find that P��� exhibits two regimes. For

��e−apc, we show both analytically and numerically that for
ER networks P��� follows a power law,

P��� � �−� �� = 1 − �k�/a� . �13�

We also find that for SF networks, Eq. �13� seems to be a
good approximation, consistent with numerical simulations.
The distributions of optimal path length and the path length
of the electrical currents in complex weighted networks
�18,19� have been found to depend on N for all length scales
and all types of networks studied. In contrast, here we find
that the low conductance tail of P��� does not depend on N
for both ER and SF networks. However, the high conduc-
tance regime ���e−apc� of P��� does depend on N, in a
similar way to the optimal path length and current path
length distributions �18,19�.
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FIG. 4. Kirchhoff method results of the percolation part of ER
networks with the same value of pc=1/ �k�=0.33. �a� Normalized
Pp��� for fixed a /N1/3=1.5. �b� Scaled plot of ���P��� as a func-
tion of � / ��� for three values of a /N1/3. For each value of a /N1/3,
the thick line is for N=256 and the thin line is for N=1024.
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